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 n tropical and subtropical beaches around the world,  
 female sea turtles have come ashore to lay their  
 eggs for millennia. When the young turtles scurry 
down the beach to the ocean, they carry their parents’ DNA. If they 
survive to adulthood, the females return to the same spot to lay 
their eggs in a process known as natal homing, which was first 
hypothesized by Archie Carr in 1967. As a result, females nesting 
in the same region are genetically similar to one another and 
dissimilar to those in other regions. 

Over the past 30 years, genetic tools have helped researchers 
to understand how sea turtle populations are connected across 
time and space and have further taught us that the precision of natal 
homing varies among species and regions. Researchers are learning 
how demographic, behavioral, and environmental forces shape 
gene flow among rookeries, plus the implications this information 
has for identifying appropriate population units for conservation 
purposes. Rapid advances in genomic technologies and analytic 
methods have given scientists a means to differentiate among 
genetically distinct sea turtle groups at increasingly finer scales.

AT LEFT: A flatback turtle in Australia. Researchers have identified seven genetically distinct flatback 
management units. © Doug Perrine
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Ensuring the Future of 
Stock Identification
Genetic research has come a long way since the cumbersome 
days of restriction fragment length polymorphism or radioactive 
staining of microsatellite loci! Only 20 years ago, sequencing the 
sea turtle genome would have taken 13 years and cost  
US$300 million. Today, a complete genome costs as little as 
US$1,000 and can be sequenced in a single day on a machine 
that fits in the palm of a hand. As genetic tools become more 
affordable, the capacity of researchers to do detailed studies is 

Defining Management Units
Sea turtles have complex life histories; they are long-lived and 
take decades to reach sexual maturity. Throughout their lives, 
they occupy widely dispersed oceanic and coastal areas as 
their ecological needs change. Young turtles from the same 
nesting beach may end up in distant foraging areas, and 
foraging areas may host a mix of turtles from widely dispersed 
rookeries. Addressing such complexity for successful conserva-
tion and management is challenging because individual  
populations need to be identified, evaluated, and monitored 
across all life stages and habitats. Tagging and satellite  
telemetry partially address those challenges but can be  
impractical. Genetics therefore plays a vital role in obtaining 
reliable, detailed information about sea turtle population struc-
ture and behavior.

Natal homing behavior promotes the differentiation of  
DNA between rookeries, which can help to define genetic  
stocks or management units (MUs). The MUs are based on signif-
icant differences in the distribution of mitochondrial variants 
(haplotypes) inherited from the mothers or from nuclear DNA 
(nDNA) alleles inherited from both parents. MUs represent the 
appropriate scale for monitoring changes in population abun-
dance and assessing threats because individuals lost in one  
MU are unlikely to be replaced by individuals from another MU. 
Therefore, the first step in informing effective management  
decisions is to determine which rookeries to consider as part  
of a single breeding population and which to consider as sepa-
rate populations.

A 1992 landmark study led by Brian Bowen provided the 
first global view of the genetic variation in sea turtles;  
since then, our understanding of population structure for all sea 
turtle species has improved enormously. For green turtles, 
researchers have advanced from 14 MUs in 1992 to more than 
76 MUs today (see map on p. 20). Early studies suggested that 
rookeries less than 500 km (311 mi) apart were not genetically 
distinct, but more comprehensive sampling continues to reveal 
more complex patterns of female natal homing and dispersal. 
We now know that genetic diversity and population structure 
can vary greatly between species and regions and at unexpect-
edly fine scales, such as between hawksbill rookeries on either 
side of Barbados (a distance of 30 km or 19 mi) or green turtle 
rookeries on opposite sides of a single Florida inlet! 

At the same time, olive ridleys nesting in arribadas at 
Ostional, Costa Rica, are indistinguishable from those nesting at 
Escobilla, Mexico, more than 1,300 km (808 mi) away. Widespread 
leatherback turtles are characterized by low genetic diversity 
globally, and they have fewer rookeries than other marine turtle 
species. Green turtles, meanwhile, are one of the most globally 
abundant and widespread of all sea turtles, which is reflected in 
more MUs (76 and counting) and greater genetic diversity.

A genetic marker is a DNA sequence with a known physical 
location on the genome. Our use of novel genetic markers 
improves how well we can detect population structure. Thirty 
years ago, the first studies about genetic structure in sea turtles 
used expensive restriction enzymes to cut mitochondrial DNA 
(mtDNA) and to define haplotypes that were based on gel band 
patterns, although much of the genetic variation remained 
hidden. This effort improved with sequencing technology in the 
late 1970s but was still difficult and expensive; the generation of 
even short stretches of sequences (approximately 400 base 

pairs [bp] at first) was a reason to celebrate! This approach later 
expanded to approximately 800 bp of the mtDNA control region. 
More recent work found variation in a hypervariable repeat 
segment inside the control region that revealed a population 
structure among Mediterranean green turtle rookeries that was 
undetectable before. 

Now, with sequencing of the entire mitogenome (16,000 bp),  
a variation that subdivides control region–defined haplotypes 
into additional variants can be seen. We now know, for instance, 
that Caribbean green turtles with the 400 bp haplotype CM-A5 
represent at least 30 different female family lines, thereby 
providing even more power for the fine-scale definition of 
nesting populations. 

Making Connections
Once the genetic signature of rookeries has been characterized, 
the data can be used to determine the origins of turtles sampled 
far away from the nesting beaches in migratory routes or 
foraging areas or from live or dead animals impacted by humans. 
For example, studies show that loggerheads encountered as 
fishery bycatch in the North Pacific and in foraging grounds off 
the coast of Baja California, Mexico, all originate from rookeries 
in Japan. Research on green turtles foraging at Australia’s Great 
Barrier Reef has been used to show how recruitment of juvenile 
turtles into foraging areas has changed over time and how the 
changes can be directly linked to reduced hatching success at 
Raine Island.

Monitoring: Collaborations 
Are Key
Knowing what proportion of turtles from different MUs is present 
in shared habitats is vital for conservation planning, because the 
mortalities in such areas may affect several distant MUs. The 
power of genetic tools and methods depends on how well sea 
turtle monitoring can fulfill two key criteria: (a) sampling all or 
most of the MUs found in shared habitats and (b) ensuring the 
accuracy of all MU definitions. Such knowledge underscores the 
importance of continued genetic sampling of all sea turtles wher-
ever they occur, a task that requires global-scale collaboration 
among a multitude of partners.

Data for several key nesting populations are currently 
unavailable, too old, or limited by small sample sizes, thereby 
preventing reliable assessments of MU boundaries. As more 
laboratories embark on their own sea turtle research, all 
researchers must strive to work together to develop the highest 
levels of technical capacity, to create standardized methods, to 
share research protocols and priorities, and to identify funding 
so that we can ensure that the most critical conservation chal-
lenges are being addressed. 

Most importantly, networks among experts must continue to 
thrive in order to encourage data sharing and to support global 
marine turtle management and protection efforts. An excellent 
example of one such network is the Asia–Pacific Marine Turtle 
Genetics Working Group, which convenes dozens of researchers 
from across that vast region through frequent workshops and 
other networking opportunities to enhance in-country capacity 
for marine turtle genetic studies.

no longer restricted to a few well-funded laboratories. High-
quality reference genomes have been published for green and 
leatherback turtles (see SWOT Report, vol. XVI, pp. 12–13); 
genomes for all other sea turtle species are expected to be 
completed within the next two years. Those advances will usher 
in a new era of whole-genome sequencing and the development 
of inexpensive assays that will democratize the use of genomics 
for sea turtle biology and conservation. It will allow us to vastly 
refine our understanding of sea turtle boundaries and the impacts 
of threats and to focus sea turtle conservation efforts in targeted 
ways that were impossible in the not-too-distant past. 

A researcher draws a blood sample from a flatback turtle on Curtis Island, Queensland, Australia. Tools for genetic analysis have both advanced and become vastly cheaper in 
recent years, making detailed genetic studies much more feasible than before. © Doug Perrine 
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Global Management Units for Sea Turtles
The following maps display global nesting sites and known management units (MUs) for each sea turtle species based on mitochondrial 
DNA. Individual nesting sites with available genetic information are shown with colored symbols; sites that belong to the same MU 
share a color. Given the large number of MUs globally, colors may repeat both within and between species maps. Management units 
can be explored in detail at the SWOT Online Map application (http://seamap.env.duke.edu/swot). Sites that have been sampled but 
not yet assigned to an existing stock are colored gray. Data for the maps were sourced from the SWOT team and reviewed literature; 
for complete citations see pp. 53–54.

Legend

Base maps: Ocean Basemap—Esri, DeLorme, GEBCO, and NaturalVue
Projection: Eckert IV
Produced in partnership with: Oceanic Society, OBIS-SEAMAP, and the IUCN-MTSG

Olive ridley turtle management units. Of 494 documented nesting sites, 33 rookeries have been genetically sampled, and 17 MUs have 
been identified. Undersampled regions include the northeast coast of South America, West India, Pakistan, and Southeast Asia.

Green turtle management units. Of 1,568 documented nesting sites, 164 rookeries have been genetically sampled, and 76 MUs have been 
identified. Undersampled regions include parts of Southeast Asia, the Red Sea, the Northeast Indian Ocean, East Africa, and the East Pacific.

Loggerhead turtle management units. Of 805 documented nesting sites, 62 rookeries have been genetically sampled, and 26 MUs have 
been identified. Undersampled regions include the Northeast Indian Ocean.

Kemp’s ridley turtle management units. Of 67 documented nesting 
sites, nine rookeries have been genetically sampled, and one MU 
has been identified. Undersampled regions include the Southern 
Gulf of Mexico.

Flatback turtle management units. Of 225 documented nesting sites, 
17 rookeries have been genetically sampled, and seven MUs have 
been identified. Undersampled regions include Northeast Arnhem 
Land, Australia.

Hawksbill turtle management units. Of 1,650 documented nesting sites, 72 rookeries have been genetically sampled, and 30 MUs have been 
identified. Undersampled regions include West Africa, the Red Sea, the North Indian Ocean, Southeast Asia, and the Southwest Pacific.

Leatherback turtle management units. Of 889 documented nesting sites, 26 rookeries have been genetically sampled, and nine MUs have 
been identified. Undersampled regions include parts of Southeast Asia.

https://www.seaturtlestatus.org
http://seamap.env.duke.edu/swot
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Global Management Units for Sea Turtles  
Data Citations
The following data sources were used to create the maps of “Global Management Units for Sea Turtles” on pp. 20–21.
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